Non-quadratic Proximal Regularization with Application to Variational Inequalities in Hilbert Spaces

نویسندگان

  • Alexander Kaplan
  • Rainer Tichatschke
چکیده

We consider a generalized proximal point method for solving variational inequalities with maximal monotone operators in a Hilbert space. It proves to be that the conditions on the choice of a non-quadratic distance functional depend on the geometrical properties of the operator in the variational inequality, and – in particular – a standard assumption on the strict convexity of the kernel of the distance functional can be weakened if this operator possesses a certain ”reserve of monotonicity”. A successive approximation of the operator (using the -enlargement concept) and of the ”feasible set” is performed, and the arising auxiliary problems are solved approximately. Weak convergence of the proximal iterates to a solution of the original problem is proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

ψ-pseudomonotone generalized strong vector variational inequalities with application

In this paper, we establish an existence result of the solution for an generalized strong vector variational inequality already considered in the literature and as applications we obtain a new coincidence point theorem in Hilbert spaces.    

متن کامل

Some results about proximal-like methods

We view some ideas for improvement, extension and application of proximal point methods and the auxiliary problem principle to variational inequalities in Hilbert spaces. These methods are closely related and will be joined in a general framework, which admits a consecutive approximation of the problem data including applications of finite element techniques and the ε-enlargement of monotone op...

متن کامل

Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities

In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicat...

متن کامل

Interior Proximal Method for Variational Inequalities: Case of Non-paramonotone Operators

For variational inequalities characterizing saddle points of Lagragians associated with convex programming problems in Hilbert spaces, the convergence of an interior proximal method based on Bregman distance functionals is studied. The convergence results admit a successive approximation of the variational inequality and an inexact treatment of the proximal iterations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Universität Trier, Mathematik/Informatik, Forschungsbericht

دوره 01-01  شماره 

صفحات  -

تاریخ انتشار 2001